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Abstract— During mass evacuations, many psychological and
physical factors are responsible for stampedes and other life
threatening situations. Quantitative and qualitative analyses of
these factors are of high importance while devising optimal
strategies for evacuations. In this paper, we present an agent-
based model that considers psychological and physical factors
that cause panic in such situations. We have also simulated some
simple evacuation scenarios and presented a method to identify
possible bottlenecks and shortcomings in the environments during
emergency evacuations. Our method also helps in evaluation and
analysis of different evacuation strategies. To enable this analysis,
we have used a rule-based roadmap approach, where critical
nodes in the environment are identified by the evacuation planner
and each node has a special rule according to the strategy of the
planner. We evaluate different strategies on parameters, such as
evacuation time and physical discomfort caused to the agents.

Index Terms— Agent-based modeling, egress, emergency evac-
uation, panic, simulation.

I. INTRODUCTION

EMERGENCY scenarios, such as fires, earthquakes, ter-
rorist attacks, and so on, may require evacuations of

relatively large numbers of people in short times. However,
the onset of panic in a crowd of people under such cir-
cumstances may trigger a stampede with serious, even fatal
consequences—people crushed or trampled [1], [2]. Panic
makes people behave irrationally at an individual level, and
also creates undesirable collective behavior like stampedes,
causing serious threats to the lives and well-being of all
concerned—it is known from painful collective experience
that panic can actually hinder timely evacuations and can
even cause mass fatalities. The unpredictable and nonadaptive
behaviors of crowds in panic situations constitutes a real
danger to the lives of people [3]–[5]. Such dynamics of
crowds apply when large numbers of people are gathered for
a common purpose, such as at concerts, movie screenings,
sporting events, rallies, and other mass events. Ease of trans-
portation and communication in modern times has fostered
the increased occurrence of such crowd events, which has in
turn increased the probability of hazards due to stampedes,
which is a most calamitous form of collective crowd behavior.
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People in crowds also show herding behavior and follow other
people mindlessly, which may fuel stampedes [6]–[8].

Human crowd behavior, which is generally in order, is liable
to be completely different and highly uncoordinated during an
emergency evacuation, due to panic and fear; therefore, there
is a need of a mechanism to manage crowds in such situa-
tions [9]–[11]. The current best practice in any mass gathering
is to have enough emergency personnel to assist the crowd
during emergency evacuation. In some places which are not
so large, such as lectures halls, theater halls, supermarkets, and
so on, this practice is mostly overlooked. Organizers mostly
rely on precautions, such as signage, cues, and evacuation
notifications, which, however, run counter to both individual
and mass psychology during emergencies [12]–[14].

Mathematical models play major roles in explaining the
dynamics of evacuations, and help engineers, architects, and
scientists to make better decisions for evacuation planning.
There are two broad types of models in use. One type
consists of the macroscopic models, which give mathematical
equations describing the escape dynamics [8], [15]. Helbing’s
social force model [6] is a notable member of this category.
The other type consists of individual-based models, such
as cellular-automata-like approaches to molecular dynamics
and agent-based modeling [16]–[19]. Agent-based modeling
has been very effective in asking “what-if” questions about
crowd behaviors [20]–[22]. In the case of crowd safety and
security, it becomes even more significant due to the lack of
real-life experiments and the data needed by other modeling
techniques [23]. It is easier to simulate cognitive behaviors—
such as the occurrence and causes of panic, the heterogeneity
of agents, communications between agents, and so on—in
an agent-based model (ABM). For example, a decision an
agent makes during an evacuation may affect its physical as
well as psychological parameters. Changes to its psycholog-
ical parameters may in turn affect future decisions made by
the agent. Such issues can be accounted for in our model,
which is individual-based, but not in any macroscopic model.
Helbing et al. [8] discuss the characteristic feature of escape
panic, but there are no cognitive or psychological parameters
described in their model, which trigger the undesirable behav-
ior, such as jamming and overcrowding. Quantifying these
aspects and predicting their effect on how people choose exit
doors is of high importance [24]–[27].

In this paper, we present an approach for the analysis of
strategies for safe evacuations using an ABM, to improve the
ability to design better evacuation strategies as has been long
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sought [3], [11], [28]. Using this approach, it is possible to
identify bottlenecks in the floor plans of built areas. It is
also possible to compare and evaluate different designs and
locations of exit doors with respect to properties, such as
position, width, and number of the doors (if there are doors
more than one). Our evaluations consider evacuation times
and the levels of physical discomfort of the human agents
in the environment, and enable us to model and quantify the
effect of panic generated among humans during life-critical
evacuation situations. To incorporate cognitive aspects, our
model permits us to identify the cause and effects of panic.
Panic in our model is associated with certain factors, such
as distance from the exit door, velocity of neighbors heading
toward exit, count of nearby agents who have high degrees of
physical discomfort, and lag in velocity (if an agent is moving
slowly due to injury, then the panic level is taken to increase).
The velocity of an agent is of course a vector; if the direction
of an agent is not aligned with that of fellow agents, or if the
speed of the agent is lower than that of nearby agents, then the
panic of that agent increases. Because of the social nature of
human physical discomfort, any occurrence of injury or severe
discomfort among nearby agents also affects the panic level
of an agent.

There may be many more factors affecting the panic level
of a human being in a crisis situation [29], [30], but as an
initial step, in our model, we have identified these factors and
accounted for them in our mathematical model of panic.

For crowd path planning, we make use of the boids behavior
model of Reynolds [31]. To fit it to human crowds, we amplify
certain behaviors based on emotional parameters, such as
panic, and physical parameters, such as location and velocity.
We also use a relevant aspect of the social force model [8] for
the calculation of physical pressure among agents in a crowd.

For complex environments with many obstacles, our
approach is to evaluate assistance strategies. We may describe
assistance in this regard as prior (standing) instructions or real-
time instructions given to agents in a crowd during emergency
evacuations. It may come from outside of the crowd environ-
ment through communications, signage, and announcements.

We build a roadmap of the environment, which is computed
during the preprocessing stage. A roadmap is a graph of the
environment which has nodes and paths [32], where every
node contains certain rules, which an agent has to follow if
it reaches that node. All these rules combined together form
a strategy of evacuation; for example, at a narrow passage,
the rule can be follow the leader or form a queue. We can
implement different strategies and select the best of them,
finding the best permutation of the rules based on some
performance parameters. Another physical parameter in our
model is the visibility of the exit door to the agents. Visibility
here refers to the knowledge of the exit door and its immediate
vicinity by the agents. In many evacuation situations, it is a
critical factor.

We use MASON, a Java-based multiagent simulation
tool [33], for simulation of some evacuation scenarios. In our
simulations, we have considered different permutations of exit
doors and their visibilities. Even the simpler cases prove to
be informative enough to warrant a qualitative analysis of the

positions of the exit doors. For instance, we have simulated the
evacuation of a lecture hall with 160 agents (attendees). At the
time of evacuation, one door that is most used for entering the
hall is found to be crowded, but even with limited assistance
with signage, crowd evacuation can be managed.

In summary, the following are the novel contributions of
this paper:

1) We propose an ABM of human evacuation under panic.
This model conforms to published studies in psychol-
ogy which have analyzed the behavior patterns seen in
panicked evacuees.

2) We present a simulation study of these psychological
factors on the agents during evacuation.

3) We use the AMB and further simulate some evacuation
scenarios to indicate how to identify bottlenecks in
environments that may need to be evacuated.

4) We create a system to test different evacuation strategies
using a rule-based approach on these agents; this is a
way to analyze what-if scenarios on emergency evacua-
tions.

The rest of the paper is structured as follows. Section II
describes the context briefly with reference to the relevant
prior literature. Section III gives our system model. Section IV
discusses results of the simulations, and Section V presents the
conclusion.

II. RELATED WORK

The simulation and modeling of animal flocking behavior
has been done extensively from years by researchers of com-
puter graphics and robotics. More recently, mass human behav-
ior and crowd behavior under panic have also been studied.

A. Previous Crowd Evacuation Work

The theory of boids is one of the most influential in the
behavioral study of flocks, by Reynolds [31], [34]. It is a model
of polarized, noncolliding aggregate motion, such as that of
flocks of birds and herds of beasts, which demonstrate emer-
gent properties, i.e., where global behavior arises from simple
local rules applied independently on each agent, such as rules
governing separation, cohesion, and alignment. Studies can
also be empirical; for example, Benthorn and Frantzich [17]
recruited volunteers for an emergency evacuation and pre-
sented an experimental study.

An important later study by Frank and Dorso [15] showed
that in the presence of obstacles, a shortcut people might
take in order to get to the exit will probably do no better
(clever is not always better). Ji and Gao [16] simulate the
evacuation process in a dancing hall. They introduce a leader–
follower model, where each group is assigned a leader and
each leader is attached to one exit door; they also examine the
coordination between leaders. The A* algorithm [35] is used
for path finding in the dancing hall. Yang et al. [36] present
a mathematically optimal leader–follower model.

To control a flock or group, there have been studies in robot-
ics, and some have been described as shepherding behavior.
Schultz et al. [37] introduce a genetic algorithm for a hybrid
cognitive reactive system, with rule-based learning to control
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the movement of a reactive agent. Vaughan et al. [38] construct
and simulate a robot that guides a flock of geese in a circular
environment. Recently, Boukas et al. [39] present a model for
a robot that assists in crowd evacuation.

Funge et al. [40] use shepherding behavior for territory
safeguarding, which can be applied in mine sweeping and
surveillance (e.g., preventing birds from flying over runways
at airports and other restricted aerospace). Although all of
the previous techniques provided simplistic planning and
navigation capabilities, Bayazit et al. [32] show how global
information from a roadmap of an environment allows more
sophisticated flocking behaviors. They apply this technique
to homing, goal searching, traversing narrow passages, and
shepherding behaviors of flocks. Another work on shepherd-
ing behaviors by Lien et al. [41] extends this approach to
shepherding by improving locomotion and verity of other
behaviors, such as coverage, patrolling, and collection of a
heard. They also describe the methods for selection of the
steering point, how to approach a flock to collect them in
groups and assign shepherd agents to groups.

B. Current Panic Models

The social force model of Helbing et al. [6] is based on
psychological and social forces like nervousness and panic.
In this model, panic acts as a force on individuals to alter
their velocity. The model also accounts for the forces applied
by fellow human beings while running and pushing. Taking
velocity as a parameter, Helbing et al. [6] arrive at simulation
results about evacuation timings which tend to validate the
adage faster is slower, when it comes to evacuation in the
event of panic. This paper is also supported by various
sociopsychological studies and empirical observations [9].

On the studies of rescue robots, Murphy [42] and Bethel and
Murphy [43] study how volunteers reacted in panic during
urban disasters. They suggest using voice communications
with human agents to ease anxiety and reduce panic. Robinette
and Howard [44] try to apply the same concept in robots to
guide the crowd in emergency evacuation. Pelechano et al. [18]
consider communication as a key factor during the evacuation
and show how a random leader from among the crowd can be
helpful during emergencies if it has effective communication.
Viswanathan et al. [45], [46] have studied some of the motion
planning methods known today and have given a quantitative
comparison, which proved very useful to us to choose social
force model for our study.

A recent study on understanding panic by
Shiwakoti et al. [47] proceeds by examining empirical
data collected from panicking Argentine ants to study crowd
panics at turnings and intersections. Sarshar et al. [48]
demonstrate how panic can dynamically vary from passenger
to passenger with different physical (or mental) conditions.
Vermuyten et al. [49] present a survey of optimization models
for pedestrian evacuation and design problems. They show
that social force and ABMs are powerful tools for model
complex and heterogeneous systems. Ma et al. [50] use the
extended social force model to show the effect of pedestrian
evacuation under limited visibility. Li et al. [51] present

different simulation scenarios on passenger evacuation from
the platform of urban metro stations.

III. AGENT ATTRIBUTES AND BEHAVIOR MODEL

Our model is similar to classical many-particle system
models, with each agent being similar to a particle with a
size and a direction of motion, moving in a continuous 2-D
Euclidean space. Agents can be added or removed (the model
allows for simulations with different numbers of agents).

Each agent has certain attributes and behaviors; also there
are refinement factors associated with the behaviors. An
attribute xi of an agent i (as given below) specifies the
physical and psychological properties of the agent. Behaviors
z are path-planning rules each agent follows. The refinement
factors mz

i alter the intensity of a behavior z based on their
values. There are also some distances dz

i associated with
agent i , which define the scope of a certain behavior z. These
distance are the radial distance from an agent, which define
the boundary of the group we consider for any behavior. We
can obtain the values of all these for an agent in real time,
and can also record the values in logs for later analyses.

The environments modeled are the following:

1) the human agent environment;
2) the obstacle environment; and
3) the variable visibility environment.

A human agent environment has all the agents (with their
attributes, behaviors, and refinement factors), which are to
collectively simulate a crowd of human pedestrians.

The obstacle environment abstracts relevant properties of
obstacles, which are its position and size. (Obstacles are static
and do not move.)

The variable visibility environment is associated with exit
doors. Every door has certain visibility range. If an agent is
within the visibility range of a door, it is assumed that the
agent has the information about the position of the exit door.
Else, an agent is unaware of the exit door.

A. Modified Boids Model

Our model for the movement of the agents is based on boids
rules [34]. The theory of boids posits that it is possible to
simulate flock movement by following three simple rules.

1) Cohesion: Every individual agent tries to move toward
the center of mass of the group.

2) Separation: An agent moves away from a fellow agent
if the distance between them is less than a certain avoid
distance.

3) Alignment: Every agent tries to align itself with the
direction of the group.

To incorporate this model in human path planning, we vary
the weights of these according to the psychological and
physical parameters of the agent, using refinement factors.
In our simulations, all agents follow these rules at the micro
level, but their movements at macro level are governed by their
goal velocities, which are calculated based on their relative
positions with respect to the obstacle (if any), and the exit
doors in the environment.
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TABLE I

ATTRIBUTES OF AGENTS

Table I presents the attributes and the symbols we use to
represent them. At any time t , an agent i is specified by
the 5-tuple of primary attributes �ri , wi , vi , pi , γi , li �. A brief
description of these is as follows.

1) ri : Since our simulation is particle like, it is the radius
of an agent i (which represents half the shoulder width
of a human [6]).

2) wi is the weight of agent i . This attribute is used in
calculating the physical force experienced by the agent.

3) �vi is the instantaneous velocity of an agent i at time t .
It is a vector with magnitude and direction.

4) �pi is the position vector of agent i .
5) γi is the panic level of the agent, 0 ≤ γi ≤ 1, where a

value of 0 means no panic and 1 the highest.
6) li is the ease distance for agent i , which is the maximum

acceptable distance to an exit door. If an agent does not
see an exit door within this distance, its panic is liable
to increase.

The radial distances associated with an agent i ,
�dc

i , da
i , dl

i , de
i � ∈ R, which are used for defining the

scope of different behaviors of agent i . A brief description of
these is as follows:

1) dc
i : is the radial distance from the agent i , which define

the boundary of the group we consider for cohesion
behavior.

2) da
i : This is the avoid distance of agent i , i.e., the

minimum distance by which i separates itself from an
agent j �= i .

3) dl
i : is the radial distance from the agent i , which defines

the boundary of the group we consider for alignment
behavior.

There are some behavior refinement factors
�mg

i , mc
i , ms

i , ml
i , mo

i � ∈ R (where R denotes the set of
real numbers), used for altering the behaviors of agent
at different situations. The values of these factors depend
upon physical factors, such as position and velocity and
sociopsychological factor like panic.

1) mg
i is a factor associated with the behavior of getting

to the goal. Every agent first decides its goal, which is
the closest exit door. If agent i cannot see any door,

its goal velocity component is zero, in such cases, this
component does not contribute toward the motion of the
agent. This factor for goal velocity always has higher
value to make goal velocity dominate the motion at
macro level, which is around 45%–50% of the total
velocity.

2) mc
i is a factor associated with herding behavior, which

dominates when an agent’s knowledge of the environ-
ment is limited. In that case, agents (like people) try to
follow others. Even in very high panic situations people
show herding behavior [4], and agents in our model do
likewise.

3) ms
i is a factor associated with separation behavior. On

increasing this factor, an agent is liable to separate
itself from a herd to a safe distance. Near exit doors
where every agent is trying to get out, there is increased
risk of injury or physical discomfort to agents. In such
situations, we can separate agents from one another by
increasing this factor.

4) ml
i is a factor associated with the alignment behavior.

When we require disciplined motion of agents such as
queuing, increasing this factor increases the alignment
of the group of agents. By combination of separation ms

i
and alignment ml

i , we get the required queuing motion.
This is beneficial when agents have to move through
narrow passages while they are being assisted during an
emergency evacuation.

5) mo
i is associated with obstacle avoidance behavior.

When there are many obstacles in an environment,
increasing the value of this factor increases the behavior
of avoiding obstacles swiftly while moving toward the
goal.

A complete architecture of the system model is presented
in Fig. 1. An agent i first decides its goal and calculates
its goal velocity, which is then multiplied by mg

i to decide
its weighted goal velocity component. After that, velocity
components due to boids behavior rules (cohesion, alignment,
and separation) are added. These constitute 15%–20% of the
total velocity. Finally, the velocity component for obstacle
avoidance is added, which constitute around 25%–30% of
the total velocity. All these components are variable, and
the corresponding refinement factors too continually change
during simulation.

After the velocity calculation, we calculate the panic level
γi of agent i . How we calculate panic and on what parameters
it depends, is explained in Section III-B. After the calculation
of panic, we update the velocity of the agent at time t + 1
by exponential smoothing [52], where the smoothing factor is
γi which represents the value of panic. The granularity of the
time intervals (taken to be unity) is small enough that the total
velocity of an agent is constant during an interval.

We update the position and the velocity of the agent for
time t + 1 based on the values at time t , and calculate the
physical discomfort of the agent.

In Algorithm 1, from lines 1 to 4, we initialize the vector
components for each behavior.

In lines 5–9, we calculate the center of the mass �w of
the group for an agent i for the cohesion behavior. First,
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Fig. 1. System model.

we calculate the sum of the positions of the agents, which lie
within distance dc

i , and after that we divide it by Nc , the count
of agents in the group.

Next, in lines 10–13, we calculate the vector component for
the separation behavior �x . We calculate the vector away from
all agents j which lie in the avoid distance da

i , where j �= i .
We add all these components to get the resultant repulsion
vector.

In lines 14–18, we calculate the vector component for
alignment behavior �y. We calculate the sum of the velocities
of other agents, which are within distance dl

i of agent i . After
that, we divide it by Nl to calculate the mean velocity of the
group, where Nl is the count of agents in the group.

In lines 19–21, we calculate the vector away from all the
obstacles �z, which are within the avoid distance.

In line 22, we calculate the vector toward the mean position
of the group and multiply it with the cohesion refinement
factor mc

i . Similarly, we multiply �x with the separation factor
ms

i . After these, we calculate the vector toward the mean
velocity of the group and scale it with the alignment factor
ml

i . We also adjust �z with factor mo
i . Finally, we add all these

components and get the resultant vector.
In the worst case, any group can have all the agents, so the

complexity of this algorithm is also O(n).

B. Model of Panic

Panic has an effect on intelligent judgment [2], [4],
[22], [53]. If an agent is highly panicked, it tends not to make
rational decisions according to the normal path planning rules.

We present a model that accounts for some of the fac-
tors which trigger panic, and mimic the behavior seen in
panicked humans. Based on related studies [2], [4], [53] about
panic in human crowds, the factors we consider are as follows.

Algorithm 1 Motion Algorithm
1: procedure MOVE (agent i )
2: Vector �w, �x, �y, �z ← 0
3: Vector �v ← 0
4:

	 toward center of the mass of the group
5: for each human j in dc

i do
6: if j �= i then
7: �w = �w + �p j

8: �w = �w/(Nc − 1) 	 mean position
9:

	 try to keep a small distance
10: for each human j in da

i do
11: if j �= i then
12: �x = �x − ( �p j − �pi )
13:

	 try to match velocity
14: for each human j in dl

i do
15: if j �= i then
16: �y = �y + �v j

17: �y = �y/(Nl − 1) 	 mean velocity
18:

	 avoid obstacles
19: for each Obstacle O in da

i do
20: �z = �z − ( �po − �p j )
21:

	 add all the velocity components
22: �v = ( �w − �pi) ·mc

i + �x · ms
i + (�y − �vi ) ·ml

i + �z · mo
i

23: return v

1) The distance from the exit door, or the visibility of the
door to the agent.

2) The velocity of neighbors moving toward exits. We
define velocity as a vector. So, if the direction toward
which a agent is moving is not aligned with fellow
agents, or if the speed is slower than others’, then it
is very likely that the panic of that agent will increase.

3) The count of nearby agents who have high degrees
of physical discomfort. This factor has a significant
effect on panic—because of the social nature of physical
discomfort of humans, physical discomfort of nearby
agents tends to increase the panic of an agent.

4) The lag in velocity. If an agent is moving slowly in
relation to its group (which may be due to injury), then
its panic level is liable to increase.

We define the individual panic component at time t due
to these factors as δk(t), k ⊂ [1, 2, 3, 4] representing one of
the above described factors. These δk(t) are all normalized to
between 0 and 1. We define ζi (t) as the sum of all the δk(t)
(this also scaled to lie between 0 and 1) for an agent i at
time t . If γi (t−1) is the panic level of the agent at time t−1,
the total panic at time t is the average of ζi (t) and γi (t − 1).
In this manner, the panic level of agent i varies with time
depending on the changing values of the panic components.

For an agent i with position �pi , the position of any door d
is defined as (ld , rd ), where ld and rd are the coordinates of
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the left and right sides of the door; we calculate vector �md as
the midpoint of the door. The Euclidean distance of an agent
from nearest md is as given in (1)

Di = ( �md − �pi ). (1)

If the agent is not in within its visibility range of any door,
then we take Di as the maximum value L, which is the length
of the environment. If Di ≥ li , then panic is liable to increase.
If ri is the radius of the agent, we define the ease distance as

li = c · ri (2)

where c is a proportionality constant. We calculate δ1 due to
distance as

δ1 = 1

L
· (�Di� − �li�) (3)

To calculate the panic factor δ2 due to neighboring velocity,
we first calculate the mean velocity ṽi of the group of agents
within alignment behavior boundary dl

i . If Nl is the count of
agents within dl

i and �vmax is the maximum allowed velocity,
we calculate the component of panic due to this factor in (5)

v̈i = 1

Nl

∑
(

j∈agent within dl
i

)
�v j (4)

δ2 = 1

��vmax� · (�v̈i� − � �vi�). (5)

To address the factor of physical discomfort, we take the
count of nearby agents whose discomfort is above a certain
threshold. How to calculate physical forces among agents
is explained in Section III-C. If ω agents within distance
dc

i of agent i have levels of physical discomfort above the
threshold T , and there are total n agents in the environment,
δ3 is the panic component due to this is the count ω

δ3 = 1

n
· ω. (6)

The lag also contributes toward building the panic level. If
�vmin is the usual agent velocity (when there is no panic), then
the factor due to this is

δ4 = 1

��vmax� · (��vmin� − � �vi�). (7)

Finally, we sum all the component and normalize the value
of γi with η. We give equal weights to each factor and take
the value of η as 4, and we calculate the panic at time t as
the average of γi (t − 1) and ζi (t) in (9)

ζi (t) = 1

η

4∑

k=1

δk (8)

γi (t) = γi (t − 1)+ ζi (t)

2
. (9)

Quantifying panic in this manner is a good tool to have
in evacuation dynamics, as it provides a real-time sense
of any disorderly decisions made by agents during evacu-
ation. The effect of panic on motion planning is explained
in Section III-E.

C. Model of Physical Discomfort

For quantitative analysis of physical force among agents,
we use (10), taken from Helbing et al. [6]. According to the
original model, three types of forces act on a given agent i
with mass mi and instantaneous velocity vi (t). The first force
fi is a restorative force which steers the agent toward a desired
velocity v0. The second fi j is a repulsive force between agents
i and j . The third fiW is between an agent and the wall. In
the original model, the repulsive force is given as

fi j = {Ae(Ri j−di j )/B + kη(Rij − di j )}mij

+ κη(Rij − di j )�v t
j i ti j (10)

where

η(x) =
{

x, if x ≥ 0;
0, if x < 0.

(11)

Here Rij = ri + r j is the sum of the radii of the two
agents, di j = |ri−r j | is the physical distance between the two
agents, and mij = ((ri − r j )/di j ) is the unit vector pointing
from agent j to agent i . In addition, A = 2000 N and
B = 0.08 m are the repulsion coefficient and the fall-off length
of interacting agents respectively. The second term of the right
hand side (RHS) of (10) contributes to counteracting body
compression, and the third term to the sliding friction force.
In addition, k = 12 000 kg/s2 and κ = 24 000 kg/ms are,
respectively, the body force constant and the sliding friction
force constant used.

We require a measure of the physical pressure acting upon
an agent i due to other agent j . Because of the physical
nature of the force, it occurs when agents physically touch
other, i.e., where Rij − di j is positive. We observe from (10)
that the second and third terms of the RHS (which are
counteracting body compression, and the sliding friction force,
respectively) model the measure of physical pressure, and
come into play only when agent i and j touch each other,
i.e., Rij − di j is positive. The first term of the RHS of (10)
is nonzero even when agents i and j do not touch each other,
but due to the very low value of B , it is not significant.

We use (10) as a measure of the physical force acting among
agents. According to the original model of Helbing et al. [6],
any agent above a desired velocity is injured and becomes
an unmoving obstacle for others, if the sum of magnitude of
radial force acting on it divided by its circumference exceeds
a pressure of 1600 N/m.

D. Simulation Algorithm

In Algorithm 2, for each agent i , we first initialize the vector
components in line 3.

In line 4, we get the goal velocity �ϑg by calling the GOAL
method for an agent i , which we also scale with the factor mg

i .
The GOAL method is strategic to the floor plan, the visibility
of the exit doors, and so on. For example, in the basic case
[see Fig. 5(a)], when there is only one exit door and its
visibility is universal among all agents, the goal vector points
toward the position of the exit door. Section III-E discusses the
GOAL method when agents do not have complete information
about the environment, and when there are obstacles in the
environment.
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Algorithm 2 Simulation Algorithm
1: procedure EVACUATION( )
2: for each agent i do
3: vector �ϑi , �ϑg , �ϑm ← 0
4: �ϑg ← GOAL (i) · mg

i
5: �ϑm ← MOVE(i)
6: �ϑi ← �ϑg + �ϑm

7: if γi ≥ 0.5 then
8: �ϑi ← 0
9: ms

i , ml
i , mo

i ← 0
10: �ϑi ←MOVE(i)
11: γi ← γmean
12: �νi (t)← (1− γi ) · �ϑi + γi · �vi (t)
13: �pi (t + 1)← �pi(t)+ �νi (t)
14: �vi (t + 1)← �νi (t)
15: Fi = ∑

( j∈agent within dc
i
)fij

In line 5, we compute all other components of the velocity
by procedure MOVE (which is as explained in Section III-A).
In line 6, we add these velocity components together.

We check the panic level of the agent in line 7 and if it is
greater than or equal to a threshold (0.5 in our simulations),
lines 8–11 execute. Panicky individuals tend to show herding
behavior, so we call the MOVE method with only cohesion
(herding) mc

i factor, with all other factors set to zero, to sim-
ulate the herding behavior seen under panic.

After that, in line 11, we update the panic of the agent as
the mean panic of the agents around it, γi ← γmean. Due to
social nature of human judgments, it is known that high panic
in agent i eventually comes down to mean panic level of its
local group.

In line 12, our equation for assigning the human velocity at
time t + 1 takes the lack of intelligent judgment under high
panic into account by updating the velocity at time t + 1
by exponential smoothing, with panic γi as the smoothing
factor. When γi has high value, the weighted sum of the
velocity �ϑi (calculated by intelligent path planning) is low
in comparison to the existing velocity �vi (t). Whereas at very
low panic situation, �ϑi have much higher weighted sum than
previous velocity vi (t)

�νi (t)← (1− γi ) · �ϑi + γi · �vi (t) (12)

After calculating the resultant velocity at �νi (t), we update
the position of the agent in environment at time t + 1. We
take τ as the time fraction to update the velocity and position.
Finally, we update the position as

�pi (t + 1)← �pi(t)+ �νi (t) · τ. (13)

In simulations, we run the algorithm every τ time interval
taken to be unity and small enough that the velocity of an
agent does not change within the interval. We also update the
velocity at t + 1 with �νi (t).

In line 15, we calculate physical discomfort Fi on the
agent i by other agents, which are in centroid distance dc

i ,
by (10) explained in Section III-C.

Fig. 2. Flowchart for building the map.

To consider the time complexity of Algorithm (2), the
procedure MOVE can in the worst case be of order O(n).
Because of the for loop which runs once for each agent,
the total complexity of this algorithm is of order O(n2).

E. Model of Assistance

When a crowd is trained for evacuation by prior instructions,
or guided by some mode of external communication, such
as announcements and exit signs, there arises a need to
precisely validate and evaluate the effects and results of these
techniques, though any assistance is helpful in emergency
evacuations. In our simulations, shown in Figs. 5(b)–7(a),
when agents do not know about the exit doors, the evacuation
time increases. The results are shown in (Fig. 8). In addition,
introduction of an obstacle in some environments renders ear-
lier successful evacuation strategies ineffective. Some rational
agents can help by searching for hidden (unknown) exits, but
it is best if a crowd is guided by a tested strategy.

In practical settings, it is very unlikely that pedestrians
would remember the map of the whole environment, and it
is always better to guide a crowd through exit signs. The
model of assistance is primarily the GOAL (see Algorithm 3)
procedure, which computes the goal velocity �ϑg . It can be
executed only given complete knowledge of the environment.
A rule-based roadmap approach enables us to distribute the
knowledge of the environment.

In Fig. 2, we describe the procedure to build the map, which
we represent with symbol 
. A map is a directed graph which
consist of nodes and edges. Every node in the map has the
following characteristics: 1) node boundary; 2) destination;
and 3) rule. Node boundary is the area in the environment,
which is represented by the node. Destination is the next node
and there is an edge from the node to destination. Rule defines
the behavior agents follow in the path while moving from node
to destination.

While building the roadmap, we first identify the critical
areas in the environment, and then identify possible nodes and
the node boundary. Second, we assign the destination of each
node. In this process of building the map, we also implant
our strategies as rules on the nodes of the map. These rules
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Fig. 3. Identifying nodes in the environment.

are values of refinement factors to simulate certain motion
behavior. Every agent at that node follows these predefined
rules.

Algorithm 3 Goal Finding Algorithm
1: procedure GOAL(agent i )
2: vector �g←Initialize to 0
3: if 
 = NULL then
4: 
←Build Map
5: Set Factors (
)
6: �g← Next Node (
, �pi )
7: return �g

Algorithm 3 presents the steps to apply a rule-based
roadmap approach. In line 2, we first initialize the vector.
After that, in line 3, we check if the map of the environment

 is built already. If the map is not built, we first build the
map 
 by calling method Build Map explained in Fig. 2.

After that, in line 5, we assign the rules that agent i has to
follow, by setting refinement factors of different behaviors. In
method Set Factors, based on the position pi of the agent in
relation to the node boundary of the node in the environment,
we identify the node in which the agent lies. We assign the
rule implanted at that node in the map 
 to agent i .

Finally, in lines 6 and 7, we assign a goal velocity pointing
toward the destination node.

Build Map and Set Factors are strategy- and environment-
dependent. It is up to the user (the designer of the area
evacuation plan) to identify critical nodes and evacuations
rules as per their strategy. We are creating a general framework
to test many strategies; it is not specific to any environment
and strategy, which is the primary aim of this paper—to enable
the process of validating different evacuation strategies.

We show this approach by a simulation of a lecture hall
emergency evacuation (see Fig. 3); based on the floor plan of
a real lecture hall known to the authors, there are 160 agents
(lecture attendees) and 160 seats, which seat the agents but
also become obstacles during evacuation. There are two exit
doors, one at the lower right corner and one at the upper left
corner. Agents are more familiar with the lower door, which
is regularly used, so its visibility is very high. The upper door
leads to an uncommon area and is not used frequently, hence
its visibility is low.

Fig. 4. Assigning destination for nodes.

TABLE II

PROPERTIES OF AGENT IN OUR SIMULATION

For a proposed evacuation of this lecture hall, we have
identified the nodes which are presented in Fig. 3. The nodes
with their node area and next destination as presented in Fig. 4.
The arrows represent the connectivity between nodes.

Rules implanted at the nodes abstract the overall evacuation
strategy. Initially, agents are at nodes 1–4. During evacuation,
an agent at one of those nodes is guided toward the nearest of
nodes 5–9. Considering node 5 whose area is quite narrow, we
increase ml

i for that node. Node 10 is wider, so mild herding
behavior (increased mc

i ) is better to get more agents to the
exit easily. In our simulation, we have some randomness, e.g.,
an agent at node 1 can either go to node 6 or node 7 (also
because of a blocked path, and so on).

Path planning for each agent is classified into two cat-
egories: Macro level, rule-based road map approach which
gives the goal direction and micro level path planning by
native agent behavior rules, such as cohesion, separation,
alignment and obstacle avoidance with their varied refining
factors decided by the rule applied at that node.

IV. RESULTS

We have conducted some simulation experiments based on
our algorithms and describe the results here. We make sure
to do all simulations using identical parameter settings for
better comparison and evaluation. It is of course not possible
to claim that these (or any other) simulation settings precisely



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TRIVEDI AND RAO: ABM OF EMERGENCY EVACUATIONS CONSIDERING HUMAN PANIC BEHAVIOR 9

Fig. 5. Experiment with one and two exit doors. (a) Case I—one exit door
in the middle. (b) Case II—two exit door in the middle.

describe all real scenarios, but wherever possible, we have
calibrated the model close enough to real parameters as known
from prior sources. The physical properties of an agent are
taken from previous studies [7], [45], [46], whereas other
factors have been calibrated individually to produce more
realistic maneuvering of the agents for obstacle avoidance,
collision avoidance, and so on. All the simulations serve the
purpose well to achieve our aim of presenting a qualitative
analysis of evacuation planning, marking out the bottlenecks,
critical paths, and complete evacuation strategy evaluation and
comparison.

Initial values of each property of agents in simulation
are presented in Table II. We take a normal human with
0.5–0.8 m shoulder length as the physical diameter of the
agent, and an average weight of 65 kg. The observed free
velocities for leaving a room correspond to �vi ≈ 0.6 m/s under
relaxed, �vi ≈ 1 m/s under normal, and �vi ≈ 1.5m/s under
nervous conditions. Force calculation according to (10) in
Section III-C, the force bound of 1600 N/m to declare an agent
unable to move [7]. All these properties are scaled accordingly
from meters to pixels for the simulation in MASON.

These kind of simulations can be very effective in pointing
out the shortcomings of the floor plan of any building, and also
indicate the locations and types of signage or other evacuation
assistance needed to avoid obstacles and prevent bottlenecks.

A. Experiments Without Obstacles

In this section, we present results of our experiments on
evacuation without any obstacles in the environment. We con-
sider different arrangements of exit doors in a box environment
with 400 agents. The dimension of the box is 26m × 24m
and the width of the door is 1 m, which is wide enough for
an agent but difficult for two or more agents to pass through
simultaneously. Large circles represent the visibility of a door.
Absence of a circle near the door means the door has universal
visibility, i.e., every agent has the knowledge of that exit door.

The panic level of each agent is shown in grayscale, where
white being a least panicked and black being a most panicked
agent. Black static agents are injured agents who cannot move
after receiving a physical pressure above threshold 750 N;
they further become obstacles for other evacuating agents.
Figs. 5(a) and (b), 6(a) and (b), and 7(a) show these cases.
In Cases II–V, we consider different permutations of two
exit doors. We measured the performance of the different
cases, which is presented in Figs. 8 and 9.

Fig. 6. Experiment with varying visibility. (a) Case III—varying visibility.
(b) Case IV—low-visibility exit doors at the corners.

Fig. 7. Experiment with obstacle. (a) Case V—two exit doors at the corners.
(b) Case VI—obstacle in environment.

1) Case I: This is a basic case in which there is just one
exit door for 400 agents. It turns out that just one door is
not enough for these many agents. An arc-shaped crowd
builds up near the exit door, and the time of evacuation
was 4500 clock ticks, which is very high. The level of
physical discomfort was very high among all the agents
and for 16–20 agents crosses the injury threshold, and
they become immobile (seriously injured).

2) Case II: There are two doors in the middle of two
opposite walls with equal visibility. Approximately half
of the crowd went to the first door and rest to the second
door at the bottom. It is the most favorable, both in terms
of reduced evacuation time and discomfort.

3) Case III: There are two doors in the middle of two
opposite walls but one door has low visibility of 3 m.
This situation arises when signage is poor or absent, and
most people are unaware of an alternative exit door like
a fire exit.

4) Case IV: There are two doors, both on the left side
instead of in the middle of the wall, with low visibility.
In this case, the knowledge of the environment among
the agents is very low, which is of course not conducive
to desirable outcomes.

5) Case V: There are two exit doors which are diagonally
opposite with high visibility. It is different from Case II
in door positioning. Though the crowd gets divided
evenly between the doors, the observed evacuation time
is higher than in Case II.

A comparative analysis of these cases is presented
in Figs. 8 and 9.

The following may be noted: between Cases II and III,
there is no much difference in evacuation times. In Case II,
the visibility of the doors is very high, so agents are divided
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Fig. 8. Comparison of evacuation time of the cases with two exit doors.

Fig. 9. Comparison of average count of injured agents during evacuation for
all the cases with two exit doors.

evenly at both the doors, while in Case III one door (the
lower one) has low visibility, so the agents do not get divided
evenly, which increases the physical discomfort level of the
agents at the upper door. The count of agents who experience
pressure above the threshold (resulting in injury) is really high
in Case III.

Case IV has a low evacuation rate due to the low visibility
of both doors, but the physical discomfort count is less in
comparison to Case III because the crowd gets divided evenly
between the doors due to herding behavior.

There are good things to be said about both Cases II and V,
but Case II proves to be the best.

B. Evacuation Given Obstacles

Case VI: This is similar to Case I, but with obstacles added.
Unlike the previous cases where we had not considered the
presence of obstacles in the environment, this shows how the
presence of obstacles creates bottlenecks for evacuations and
can completely change the locations, which are considered
best for an emergency door or normal exit door.

So, there is a need to identify these locations and bottlenecks
which can cause a lot of trouble at the time of emergency
evacuation. We have a simple bottleneck obstacle in front of
the exit door.

C. Lecture Hall Evacuation

In this scenario (see Fig. 10), based on the floor plan of
a real-lecture hall known to the authors, there are 160 agents

Fig. 10. Lecture hall evacuation.

Fig. 11. Flow of lower door and upper door in the lecture hall case.

Fig. 12. Average panic of an agent near lower door and upper door.

(lecture attendees) and 160 seats, which seat the agents but
also become obstacles during evacuation. There are two exit
doors, one at the lower right corner and one at the upper left
corner. Agents are more familiar with the lower door, which
is regularly used, so its visibility is very high. The upper door
leads to an uncommon area and is not used frequently, hence
its visibility is low.

The framework of this simulation is explained in
Section III-E. Figs. 3 and 4 explain the nodes we have
identified. In this case, our rules were simple. All agents at
nodes 2 and 4 move to their left or right randomly. Once the



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TRIVEDI AND RAO: ABM OF EMERGENCY EVACUATIONS CONSIDERING HUMAN PANIC BEHAVIOR 11

Fig. 13. Distribution of panic and physical force received by the agent. When
agent get a sustained physical force its panic starts to increase.

agents reach nodes 5 and 7, they follow queuing behavior by
adjusting their multipliers. At node 9 and 10, agents follow
herding behavior to go to the nearest exit door.

Fig. 11 presents a graph which is proportional to the count
of the agents coming out from both the doors. As we have
noted that lower door has high visibility, so the count of agents
coming out from it is higher than from the low-visibility upper
door. Fig. 12 presents the comparison of average panic levels
of the agents near the lower door and the upper door, which
clearly shows that the upper door area has higher levels of
panic during evacuation, so this result suggests that. This result
is encouraging for our panic model. Fig. 13 also presents
an interesting result which shows that if physical pressure is
sustained at high value for some time the panic level of the
agent starts increasing rapidly.

V. CONCLUSION

Our method of crowd path planning during emergency
evacuation is seen to be successful at giving qualitative and
some useful quantitative analyses. Qualitative analysis is also
useful to understand the complex psychological and physical
behavior of human, and the task of giving any quantitative
analysis may or may not give any useful results and may not
be trusted every time. We have successfully evaluated some
very simple floor plans and how positions of obstacles can
significantly change the environment in terms of emergency
evacuation. Our results for the model of panic are encouraging
and suggest the validity of the factors we have chosen to
associate with panic on emergency evacuations.

We can suggest with confidence that positioning doors in
the middle of a wall has an advantage in evacuation scenarios,
compared with similar doors at the corners. From the lecture
hall evacuation, we can conclude that the visibility of the doors
play a huge role in ease of evacuation and sustained physical
pressure increase the panic and increase the evacuation time
even in simple scenarios. We have also given a general
framework for testing various evacuation strategies, which is
very difficult to analyze through mock drills.

Possible future work that could extend our model would
be to incorporate more sophisticated human behaviors

(e.g., clustering by families and groups of friends). Special
scenarios requiring evacuations, such as fires, explosions,
active shooters, and so on, can also be explored, as can
evacuations in special settings, such as aircraft, ships, and large
buildings and urban complexes.
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